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a b s t r a c t

Purpose: With the increasing utilization of medications worldwide, coupled with the increasing availability 
of long-term data, there is a growing opportunity and need for robust studies evaluating drug–cancer as
sociations. One methodology of importance in such studies is the application of lag times.
Methods: In this narrative review, we discuss the main reasons for using lag times.
Results: Namely, we discuss the typically long latency period of cancer concerning both tumor promoter 
and initiator effects and outline why cancer latency is a key consideration when choosing a lag time. We also 
discuss how the use of lag times can help reduce protopathic and detection bias. Finally, we present 
practical advice for implementing lag periods.
Conclusions: In general, we recommend that researchers consider the information that generated the hy
pothesis as well as clinical and biological knowledge to inform lag period selection. In addition, given that 
latency periods are usually unknown, we also advocate that researchers examine multiple lag periods in 
sensitivity analyses as well as duration analyses and flexible modeling approaches.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// 

creativecommons.org/licenses/by/4.0/).

Introduction

While drug–cancer associations may be identified from pre
clinical studies and randomized controlled trials (RCTs), preclinical 
studies do not necessarily translate to humans [1], and RCTs are 
usually too small and short to detect rare outcomes with long la
tency periods such as cancer [2,3]. As such, large, methodologically 
robust pharmacoepidemiologic studies with extended follow-up are 
needed to examine the potential carcinogenic effects of medications. 
One important methodological consideration for such studies is the 
application of lag times.

In cancer pharmacoepidemiology, with the application of a lag 
time, cancer outcomes diagnosed shortly after drug initiation are not 
regarded as those occurring during “exposed person-time.” Likewise, 
a period after drug discontinuation is considered person-time at risk, 
due to residual effects of drugs on cancer risk. Figure 1A and B 
outlines hypothetical examples of the application of lag times in 
new-user, active comparator cohort and case–control study designs, 
respectively. In duration or dose analyses, lags should also be con
sidered. For example, suppose we apply a 1-year lag period, and 
“long-term use” is defined as having the equivalent of 5 years of use 
of a drug. In this setting, a patient should be classified as a “non–long 
term user” until 1 year after they reached the threshold for long- 
term use.

Lag times are useful in drug–cancer studies to address (i) cancer 
latency, (ii) reverse causality, and (iii) detection bias [3–6]. Yet, the 
value of lag periods has received relatively limited attention in sci
entific literature. Moreover, the lack of consideration of latency and 
lag periods appears common in cancer pharmacoepidemiology, with a 
recent evaluation identifying that only 33% of all studies of glucose- 
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lowering medications and cancer considered latency in their analyses 
[7]. Therefore, in this review, we provide an overview of the metho
dological challenges lag times address in cancer pharmacoepide
miology and recommendations for their application.

An overview of the methodological challenges that lag periods 
can address

Cancer latency

Carcinogenesis is widely accepted to be a multistage biological 
process of cellular transformation, with mutational and epigenetic 
changes driving progression through key stages, including initiation, 
promotion, progression, invasion, and metastases [4]. A carcinogen 
can act at any stage of carcinogenesis. In general, it is believed to 
take many years from exposure to a causative agent to cancer de
velopment and subsequent clinical manifestation and diagnosis [8].

This period includes two distinct concepts, the induction and 
latent periods [9]. The induction period corresponds to the time 
from exposure to a component cause and disease initiation, i.e. the 
time of malignant conversion, which for cancer often takes many 
years. Once cancer has reached malignant conversion and is irre
versible in the absence of therapy, the distinct latent period begins. 
Thus the latent period refers to the period between malignant 

conversion and clinical manifestation or detection (Fig. 2) [9]. In 
practice, it is often not possible to distinguish between these per
iods; thus, when we consider cancer latency, we often refer to the 
time from exposure to cancer detection, which includes both the 
induction and the latent periods. The combination of both the in
duction and the latent periods has been labeled by Rothman as “the 
empirical induction period” however throughout the scientific lit
erature this is most commonly referred to as “latency,” and as such 
we will do so throughout this review [9,10].

Minimum length of cancer latency periods
Latency periods vary by type of carcinogen, cancer type, dose, 

duration, and timing of first exposure [3,9,11]. Usually for hypothe
sized exposures, including drug–cancer associations, the latency 
period is unknown [8]. Knowledge of cancer biology and latent 
periods for other nonpharmacological exposures may offer insights 
relevant to pharmacoepidemiology and help aid in our choice of lag 
period. In the 1970s, early literature concluded that the latent per
iods for most cancers were log-normally distributed [12]. Despite 
this, studies investigating minimum latency periods for specific 
cancers remain limited. Studies have suggested that the latency 
period for ovarian cancer is between 30 and 40 years [13–15]. For 
colorectal cancer, it is thought to take 5–10 years from initiation to 
adenoma development and 5–15 years from adenoma to invasive 

Fig. 1. (A) Figure depicting the application of lag periods in a cohort setting. Each line represents patients entering the cohort. All patients enter the cohort on their first 
prescription of either drug A (the study drug) or drug B. In this hypothetical example, there is a 1-year latency period. As such we exclude those entering the cohort with less than 
1 year of follow-up. Follow-up (T0) begins for all patients entering the cohort 1 year after their first prescription and patients are followed until a cancer diagnosis or other 
censoring criteria such as death, or 1 year after a switch between study drugs (accounting for a 1-year lag period). This is outlined for example in patient 2. Patient 2 enters the 
cohort on a prescription for drug A. They are followed-up from 1 year after cohort entry, contributing exposed person time to drug A, until 1 year after their switch to drug B, at 
which point they are censored. In this hypothetical setting, we assume drug effects on cancer are irreversible and remain after treatment discontinuation therefore patients are 
considered continuously exposed from cohort entry irrespective of discontinuation. (B) Figure depicting the application of lag periods in a case–control study. In this figure, the 
dashed lines represent the lag period, during which prescriptions are disregarded. In the above example, the selected case receives prescriptions for drug A only during the lag 
period, therefore is considered unexposed, while the control is considered exposed.
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disease [16]. The long latency of colorectal cancer has been corro
borated by studies of smoking and colorectal cancer risk, with as
sociations observed among those with over three decades between 
tobacco cessation and colorectal cancer [17,18]. An example of cancer 
developing years after drug exposure includes adenocarcinoma of 
the vagina and cervix associated with in-utero exposure to diethyl
stilbestrol, a synthetic estrogen used until the 1970s to prevent 
miscarriage and other complications. These cancers mainly devel
oped before the age of 20 years; however, studies suggest that risk 
remains elevated even after age 40 [19–21]. Other examples include 
the apparent latency period of approximately 15–20 years for phe
nacetin-associated urinary tract cancers [22–25], while carcinogenic 
effects of hydrochlorothiazide on nonmelanoma skin cancers seem 
to appear after approximately 5 years of use [26–30] and any po
tential protective effects of aspirin on advanced adenomas and col
orectal cancer appear to emerge in the region of 5–10 years [31–34].

Nadler and Zurbenko applied a Weibull survival model to esti
mate the approximate length of time between biological initiation to 
cancer diagnosis for 44 cancer types [14]. Overall, over 35 of these 
cancer types were estimated to develop at least 10 years before 
cancer diagnosis, ranging from 6.6 to 57 years for solid tumors and 
2.2 and 35.7 years for lymphoproliferative cancers, highlighting the 
wide variability across cancer types.

Indeed, while most cancers typically have long latency periods, 
there are some examples of more rapid cancer development fol
lowing exposure, particularly for hematopoietic cancers, which ap
pear to have much shorter induction periods [4,35]. Such variability 
can be observed from observations of cancer risk associated with 
ionizing radiation after the atomic bomb explosions of 1945 in Hir
oshima and Nagasaki. The risk of solid cancer increased around 
10 years after the bombing, remaining elevated, while an excess in 
leukemia cases was observed 2 years after the bombing, peaking at 
around 8 years [36,37].

In the pharmacoepidemiology setting, similar observations have 
been made for certain drug–cancer associations. For example, im
munosuppressive agents, such as azathioprine, cyclosporin, and 
OKT3, have been demonstrated to have carcinogenic properties. 
Evidence originated from investigations in organ transplantation, 
where increases in non-Hodgkin’s lymphoma are observed as early 
as within 1 year of transplant receipt [38–41]. The carcinogenic ef
fects of these agents are hypothesized to be mainly attributable to 
decreased immune surveillance of cancer cells or increased infec
tions that cause cancer rather than genotoxicity. Similarly, chemo
preventative effects of tamoxifen and aromatase inhibitors on breast 
cancer may appear within 1–2 years [42–45]. However, the number 
of known examples of such short latency periods for drug–cancer 
associations is small.

In summary, the evidence of cancer latency from various ex
posures highlights several important considerations for the appli
cation and selection of lag periods in drug–cancer studies: 

• While the length of cancer latency periods varies between cancer 
types and is largely unknown, they are thought to be at least 
several years.

• Many chemical carcinogens lead to increases in cancer incidence 
after more than 10 years.

• Some examples exist for effects within both the moderate 
(1–10 years) and short (less than 1 year) time frames.

• It is expected that there should be a relationship between the 
time course of chemopreventative effects of drugs and the la
tency of cancer(s) being prevented.

Cancer initiators versus cancer promoters
Drug carcinogenic latency periods are often thought about in 

terms of cancer initiation or promotion. Initiators can be considered 
a cause of the first clone of neoplastic cells and are often thought to 
be genotoxic [8]. A promoter is a drug that accelerates the pro
gression or growth of premalignant or subclinical disease [9,46]. 
Therefore, initiators are considered to have longer latency periods 
than promoters. As such, those drugs displaying carcinogenic effects 
in short time periods, such as imbalances in cancer appearing in 
RCTs (except for lymphoproliferative cancers), are likely acting as 
promoters. One example is the observed increases in keratoa
canthoma and squamous cell carcinoma in melanoma patients 
treated with the BRAF kinase inhibitors vemurafenib and dabrafenib 
[47–49], which may appear as early as 26 weeks [50]. It is hy
pothesized that BRAF inhibitors increase mitogen-activated protein 
kinase signaling in premalignant cells, promoting progression to 
detectable squamous cell carcinomas [49,50]. Other examples of 
tumor promoter effects are thought to include squamous cell car
cinoma associated with immunosuppressant medications [51,52]
and hormone replacement therapy and estrogen receptor-positive 
breast cancer [53,54]. A contemporary example includes the ap
parent association between pioglitazone and bladder cancer, where 
early imbalances were observed in trials [55,56], including the In
sulin Resistance Intervention after Stroke (IRIS) trial, which excluded 
patients with a history of bladder cancer and those at high risk [56]. 
These findings were corroborated in several observational studies, 
indicating that potential increases in risk are observed within 2 years 
of use [57,58].

The evaluation of drug–cancer associations, particularly those with 
new medications that emerge from RCTs or case reports with short 
exposure periods, is complicated by the fact that often the mechan
isms underlying cancer associations are unknown. Researchers may be 

Fig. 2. Figure outlining the intervals from normal tissue to cancer diagnosis. The induction period corresponds to the time between a component cause (drug A) and the initiation 
or growth acceleration of cancer. In the above, drug A is a tumor initiator, i.e. the cause of the first clone of neoplastic cells. The latent period corresponds to the time between the 
irreversible malignant conversion (in the absence of treatment) from a nonmalignant precursor to invasive cancer and clinical manifestations or detection. In the above, drug B is 
acting as a tumor promoter, i.e. a drug that accelerates the progression or growth of premalignant or subclinical disease. Figure was created with BioRender.com
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too quick to dismiss associations observed within shorter periods of 
time as noncausal [59]. Indeed researchers should be mindful of falsely 
declaring a medication safe. Walker suggests that “the observation is 
the hypothesis” and argues the appropriate response is to test the 
signal in a similar setting under controlled circumstances with suffi
cient statistical power [59]. However, it is difficult to draw conclusions 
in the absence of a biological model, as is often the case. Additionally, 
hypotheses of carcinogenesis also commonly arise from pharmacology 
and studies after drug approval. In general, while the information that 
generated the signal is important, so too is our understanding of 
cancer biology and latency to help inform assumptions. Overall, ex
amples of tumor promotion effects are limited, and given the typically 
long latency of cancer, most cancer–drug associations are considered 
to have longer latency periods. Researchers need to draw on our ex
isting biological knowledge of the cancer of interest and acknowledge 
the uncertainty around the biological mechanisms of drug–cancer 
associations. In summary: 

• Variability in latency of drug–cancer associations may be de
scribed in terms of drugs acting as initiators or promoters.

• Initiators generally have longer latency periods than promoters.

• Cancer promoter effects are less common, and the mechanisms 
underlying carcinogenic drug effects are often unknown.

Residual effects of drugs on cancer risk
Patients may remain at risk for a considerable time after treat

ment discontinuation. As patients accumulate exposure there is the 
accumulation of stochastic events, such as mutations caused by a 
drug, which may take some time to occur. After a threshold cumu
lative dose has been attained, there may be the appearance of a 
“carry-over” effect even if the drug is subsequently discontinued. As 
such researchers may often lag exposure after discontinuation, 
whereby for a selected period after discontinuation of a given drug a 
study participant will be considered exposed. As observed in former 
smokers, for whom, although reductions in risk of lung cancer are 
observed upon quitting, increases remain for over 30 years after 
cessation [60]. In the pharmacoepidemiological setting, evidence 
suggests breast cancer risk declines but remains elevated for 
10 years or more after stopping menopausal hormone therapy [61]. 
By contrast, studies have shown that the risk of breast cancer as
sociated with oral contraceptive use disappears rapidly upon dis
continuation [62–64]. However, it is suggested that it may persist for 
up to 5 years, depending on the previous duration of use [65,66]. 
Indeed, there is often a correlation between cumulative use and 
timing or recency of drug use, particularly for those medications 
taken for years. Those exposed to higher cumulative doses must 
remain on the medications to accumulate such levels and are more 
likely recent users.

Most often, the relevant risk window after discontinuation is 
unknown. While evaluating the residual effects of drugs on cancer 
risk provides important information on the drug–cancer associa
tions, in practice, this is often difficult due to limited follow-up in 
data sources. Considering the minimum lag periods required to ob
serve an association (e.g., often 10 year or more), there is often in
sufficient follow-up time after treatment discontinuation to evaluate 
if risks decrease and subjects may meaningfully stay at risk in
definitely.

In summary: 

• Drugs may have residual effects on cancer risk that remain long 
after drug discontinuation (e.g., 10 or more years).

• Alternatively, the elevated risk may disappear rapidly (less than 
1 year) or within a moderate time from discontinuation 
(1–5 years); however, the length may be influenced by the pre
vious duration of use.

Protopathic bias

In addition to latency considerations, lag times also help mitigate 
protopathic bias (or reverse causation). Protopathic bias arises when 
a medication of interest is prescribed (or discontinued) for an early 
manifestation of an underlying disease of interest that has yet to be 
diagnosed [6,67]. This may incorrectly lead to the appearance of 
causal associations (reverse causality), resulting in an over
estimation or underestimation of risk estimates. Protopathic bias is a 
particular problem for a symptomatic outcome that remains un
diagnosed, as is often the case for cancer. This phenomenon was 
described in the context of estrogen and endometrial cancer where, 
estrogen was prescribed to treat uterine bleeding, a symptom of 
underlying endometrial cancer [68]. Other examples in cancer 
pharmacoepidemiology include bladder and prostate cancer, and 
medications for overactive bladder, conditions that share symptoms 
[69,70] and for proton pump inhibitors and pancreatic cancer, with 
early symptoms misinterpreted as reflux [71]. Indeed, for the latter 
example, Table 1 outlines how lag periods can be applied and varied 
in sensitivity analyses. In this case–control study, odds ratios were 
elevated when removing the 2-year lag period in main analyses, 
with estimates returning to unity with a 6-month lag period, in
dicating elevations in odds of pancreatic cancer in the absence of a 
lag period was a result of reverse causality [71]. A previous Danish 
study investigating the new use of medications before cancer diag
nosis generally found that the incidence of new drug use increased 
from around 6 months prior to a cancer diagnosis, although patterns 
varied considerably by cancer type [72]. In this study, increases in 
drug initiation close to cancer diagnosis were observed for drugs 
that may be indicated for symptoms of specific cancers, e.g., laxa
tives in colon cancer or inhaled medication in lung cancer, as well as 
in general across all cancers with treatments such as analgesics and 
antibiotics. While this suggests reverse causality may sometimes be 
eliminated with a lag of 6 months, there are notable examples where 
reverse causality is seen for more extended periods, such as up to 
2 years for incretin-based medications for type 2 diabetes and pan
creatic cancer [73].

Detection bias

Detection bias is a systematic difference in measurement or di
agnosis of the outcome between exposure groups, which can occur 
through various mechanisms. Detection bias may be introduced if 
new users of a certain drug differ from those who do not initiate. For 
example, certain drug users, in particular those of preventative 
medications such as statins, may be more likely to engage in health- 

Table 1 
Effects of varying exposure lag time on estimates of the association between 
high-use (≥1000 defined daily doses) of proton pump inhibitors and risk of 
pancreatic cancer in a case–control study 

Lag-time (months) Adjusted OR (95% CI)*

0 1.51 (1.31–1.73)
6 1.02 (0.90–1.17)

12 1.00 (0.87–1.15)
18 0.97 (0.85–1.12)
24 0.92 (0.79–1.07)
30 0.92 (0.79–1.07)
36 0.94 (0.80–1.10)
42 0.97 (0.82–1.14)
48 0.95 (0.80–1.12)
54 0.96 (0.81–1.15)
60 0.97 (0.81–1.16)

Abbreviations: OR = odds ratio; CI = confidence interval.
Adapted from Hicks et al. Pharmacoepidemiol Drug Saf. 
2018;27:926–930 [71].

* A lag-time of 24 months corresponded to the main analysis.
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seeking behaviors including cancer screening (“healthy user bias”), 
which may lead to increased detection of cancers, in particular early 
stage cancer [74]. Alternatively, users of certain medications may be 
more likely to avoid screening [75]. Detection bias was also an issue 
widely discussed in the context of estrogen and endometrial cancer, 
as estrogen use is associated with bleeding, which may lead to in
creased screening for endometrial cancer, potentially leading to an 
overestimation of risk [76,77]. In another example, recent reports 
have investigated benign prostatic hyperplasia (BPH) and its treat
ments and the risk and progression of prostate cancer [78–81]. 
However, both conditions affect the same organ and cause voiding 
problems [78,82]. A recent study has highlighted higher total pre
scription rates of BPH medications in men with prostate cancer 
before diagnosis, in particular for new prescriptions initiated in the 
year prior to diagnosis [83]. Their findings suggest that some of the 
association between BPH, its treatments and prostate cancer may be 
influenced by increased diagnostic workup for prostate cancer in 
men with BPH, as well as reverse causality and surveillance bias. 
Interestingly, in the Danish utilization study outlined in the section 
above, increases in drug initiation close to cancer diagnosis were not 
only observed for drugs indicated for cancer symptoms but also 
noncancer drugs such as antidiabetics [72]. This suggests that bias 
may also be introduced due to frequent interaction with physicians 
prior to a cancer diagnosis, leading to a diagnosis of an unrelated 
condition and initiation of new treatments or alternatively increased 
healthcare utilization around drug initiation leading to increases in 
detection. Surveillance bias may be introduced if there is increased 
scrutiny or contact with the healthcare system for one treatment 
group throughout the entire treatment period [84]. Of note, this 
differs from detection bias (increased detection around drug initia
tion) and is not dealt with by the application of lags or confounding 
control but rather by using a comparator group with similar sur
veillance patterns. Studies investigating diagnostic workup around 
drug initiation have found differential screening or diagnostic 
workup rates between drug users pre- or post-initiation, e.g., dif
ferential breast mammography rates between metformin and sul
fonylurea users [85,86]. This highlights that detection bias is not only 
problematic for nonuser comparator groups but also in active 
comparator settings. One example is the elevations in breast cancer 
for up to 4 years of use of GLP-1 receptor agonists compared to DPP- 
4 inhibitors [87], appearing to be driven by weight loss effects of 
GLP-1 receptor agonists, with mammography and diagnostic workup 
rates higher among those experiencing greater weight loss [88]. The 
application of an appropriate lag period after drug initiation means 
cancer outcomes diagnosed shortly after drug initiation are not re
garded as during exposed person-time, thus allowing a long enough 
period for undiagnosed cancer to become apparent, removing ex
posed events likely due to reverse causality or detection bias.

In summary: 

• Reverse causality is introduced when an exposure of interest is 
prescribed or avoided due to signs or symptoms of undiagnosed 
cancer.

• Increased healthcare contact around cancer diagnosis may lead to 
the initiation of drug treatment, or increased healthcare utiliza
tion at treatment initiation may lead to increased cancer de
tection.

• Detection bias may also be introduced when drugs under study 
elicit side effects that increase cancer detection.

Challenges in the application of lag times in studies of 
drug–cancer associations

Given the complexities outlined above, defining the most ap
propriate lag time for a given study may not be straightforward and 
depends on the specific drug–cancer association being studied. The 

choice of lag time is an important design consideration as biologi
cally misspecified lag periods may affect results. The long induction 
periods for drug–cancer associations can have implications as ex
posure measured at different points along the pathway, e.g. during 
the latent period may result in exposure misclassification (in
formation bias). When a period of exposure that is not etiologically 
relevant is included, estimates may be biased toward the null, with 
higher variance and decreased statistical power. In general, relative 
risk estimates will increase as the lag is more correctly specified. 
However, when applying longer lag periods, it is important to re
member that a lagged estimate might be confounded by disregarded 
exposure. For example, if we increase the lag time from 2 to 5 years, 
which leads to the risk estimate increasing, we may conclude the lag 
is more correctly specified. However, if the now disregarded ex
posure has a causal role, then the rate ratio is likely confounded 
upward by disregarded exposure.

It is important to note that when concerns about the carcinogenic 
effects of drugs emerge from RCTs within relatively short time
frames, it may be relevant to apply a shorter lag period or remove 
the lag period altogether to replicate analyses so potential proto
pathic bias may be uncovered.

Data availability may also present challenges when applying 
biological meaningful lag periods. In certain instances, data sources 
may have limited follow-up, and applying a longer lag period may 
result in the exclusion of many patients from analyses. While this 
may pose a challenge to researchers, selecting a shorter lag period 
based solely on data availability could lead to misleading findings 
and should be avoided.

Limited studies have evaluated the methodological question of 
aiming to identify an optimal value for a lag time. Some have used 
cubic splines to model appropriate risk windows and lag periods 
[89,90]; however, these may be population-specific and not gen
eralizable [3]. Other data-driven methods [72] also have limitations, 
including the assumption that estimates would move toward a 
plateau with increasing lag time and the failure to differentiate lag 
time effects and dose–response associations. The use of penalized 
distributed-lag nonlinear models has been proposed but requires 
unverifiable assumptions about the nature of the lag-response 
[91,92]. An emerging area of development to account for the inter
action between time since initiation and cumulative duration is the 
application of flexible weighted cumulative exposure methods, in 
which time-dependent exposure is weighted by recency of use 
[93,94]. In general, further methodological advances are warranted.

Other considerations: the interaction between lags and 
dose–response analyses

In addition to lagged analyses, duration or dose–response ana
lyses are also of importance for the interpretation of drug–cancer 
associations. For most cancer associations, we do not expect the 
hazard function to be proportional over time, and averaged esti
mates may not give a meaningful representation of how risk varies 
over time [3]. Duration or dose–response analyses provide insight 
into the potential mechanisms of associations, identify potential 
biases, including reverse causality and detection bias, and point to
ward potential causality [95]. For example, while recent studies of 
phosphodiesterase inhibitors and melanoma have reported eleva
tions in risk overall, associations with low-level exposure and the 
failure to observe a clear dose–response relation argue against a 
causal relationship [96]. The use of lags does involve dropping data 
and potentially useful information. The graphical representation of 
hazard functions over time using flexible modeling methods or 
stratifying on cumulative duration, dose, or time since initiation, 
using all available data (without a lag), is also very useful. For ex
ample, in a scenario where there is a 2-year latency period, based on 
prior knowledge, we may assume a priori a biologically plausible lag 
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period of 2 years and prespecify time-varying exposure groups of 
1–2 years, 2–5 years which are altered in sensitivity analyses. This 
method has the advantage of presenting all the data and allows for 
evaluating reverse causality and detection bias, where associations 
may be observed within short-duration categories, and for directly 
inspecting the potential latency period.

The importance of duration response analysis in understanding 
the mechanisms of associations raises questions on the usefulness of 
very long lag periods. If, for example, we were to apply a 10-year lag 
period, which may be biologically plausible based on prior knowledge 
of the latency period for the drug–cancer association under in
vestigation, we may expect associations to diverge at day one, as the 
first 10 years of drug use are disregarded. This can make it more 
difficult to identify potential biases and the causal mechanism. Thus, 
we may decide to apply a lag period of less than 10 years so that these 
can be investigated. This however will mean, that with the inclusion 
of person-time that is not at risk, overall averaged estimates will be 
diluted [6], reflecting the impact of latency on duration response. 
Thus if using lag times shorter than what we expect to be biologically 
reasonable, overall “ever use” estimates should be avoided.

Recommendations

As outlined above, the typically long induction and latent period 
of most cancers, the potential for reverse causality, and detection 
bias justify the application of lags in drug–cancer studies. We make 
the below recommendations for researchers undertaking studies of 
drug–cancer associations. 

1. In studies of drug–cancer associations, the relevant latency per
iods of cancer and the issues of reverse causality and detection 
bias should always be considered in the planning of the design 
and analyses, with methods, which may include lag periods, 
applied to investigate this. Results should be interpreted with 
these issues in mind.

2. Researchers should consider the information that generated the 
hypothesis or cancer signal and clinical and biological knowledge 
to help inform their assumptions of the relevant latency period. 
These should always be stated transparently and a priori.

3. Researchers should acknowledge uncertainty around a biologi
cally meaningful lag period in sensitivity analyses and their in
terpretation of results [97]. Researchers are encouraged to 
consider a range of lag times in sensitivity analyses. Additionally, 
duration response analyses, viewing the hazard function over 
time using flexible modeling methods such as cubic splines, and 
using all data in sensitivity analyses are recommended.
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